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Abstract: In  this  work,  we achieve high count-rate single-photon output in single-mode (SM) optical  fiber.  Epitaxial  and dilute
InAs/GaAs quantum dots (QDs)  are embedded in a GaAs/AlGaAs distributed Bragg reflector (DBR) with a micro-pillar  cavity,  so
as to improve their light emission extraction in the vertical direction, thereby enhancing the optical SM fiber’s collection capabil-
ity  (numerical  aperture:  0.13).  By tuning the temperature precisely to make the quantum dot exciton emission resonant to the
micro-pillar  cavity  mode  (Q ~  1800),  we  achieve  a  fiber-output  single-photon  count  rate  as  high  as  4.73  ×  106 counts  per
second, with the second-order auto-correlation g2(0) remaining at 0.08.
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1.  Introduction

The single-photon source has had a significant impact on
the development of multiple fields, encompassing quantum in-
formation,  quantum  computing,  and  quantum  communica-
tion[1−4].  Epitaxially  grown  semiconductor  QDs  and  chemical
sol  QDs  are  the  main  methods  of  achieving  single-photon
emission  from  quantum  dots[5].  Self-assembled  semiconduct-
or  QDs  have  greater  advantages[6],  such  as  a  higher  single-
photon  emission  rate[7],  covering  visible  light  to  infrared
wavelengths[8],  and easy  embedding in  microcavities[9].  How-
ever,  owing to the fact that many semiconductor materials in
the  three  and  five  groups  have  a  high  refractive  index,  the
total  reflection  makes  collection  difficult  for  many  types  of
quantum  dot.  As  such,  various  methods  have  been  em-
ployed, with the aim of improving collection efficiency. These
include  micro  lenses[10, 11],  mesa  structures[12, 13],  microcavity
structures[14],  whispering  wall  structures[15],  photonic
crystals[16, 17],  and  nanowire  micro-cavities[18].  However,  these
methods can suffer from processing difficulties, in addition to
which,  the  single  photon  source  cannot  be  accurately  loc-
ated using these methods.

In this work, we optimize previously-adopted experiment-
al  conditions[19],  increasing  the  pairs  of  DBRs,  and  employing

g () = .

a  phase-matching  growth  method[20].  In  this  way,  we  have
greatly  improved  the  intensity  of  the  single  photon.  In  addi-
tion,  we  achieve  the  direct  coupling  of  a  single  photon
source with a fiber  array (this  method is  easy to operate,  and
has  a  high  coupling  efficiency).  In  the  case  of  cavity-mode
matching  (T =  33.6  K),  at  918  nm,  we  collected  4.73  ×  106

counts per second (cps)  from the fiber end (i.e.,  2.5 times the
value  obtained  in  previous  research[19]),  with  a  time  correla-
tion  of .  This  confirms  that  the  single-photon
source  has  high  intensity  and  purity.  Our  method  is  simple
and effective, and still has a lot of room for improvement.

2.  Epi-structure and experimental setup

The  epitaxial  structures  were  grown  on  semi-insulating
(100)  GaAs  substrates  by  means  of  solid-source  molecular
beam  epitaxy  (Veeco  Gen930).  The  Epi-structure  of  the
sample is shown in Fig. 1.

We adopted the subcritical  indium deposition technique,
together  with  a  gradient  indium  flux  on  the  static  GaAs  sub-
strate,  to  form  InAs  QDs  with  top  15  and  bottom  25  pairs  of
GaAs/Al0.9Ga0.1As,  in  order  to  obtain  a  high-Q DBR  cavity.  Al-
though  the  thickness  of  the  GaAs  layer  is  designed  to  be
62.57  nm,  and  the  thickness  of  the  Al0.9Ga0.1As  layer  is  de-
signed  to  be  74.7  nm,  we  employed  phase-matching
growth[20] to achieve an accurate thickness measurement. We
firstly  grew  a  reference  sample,  with  6  or  8  pairs  of  upper
DBR, and 10 or 12 pairs of lower DBR. Once growth was com-
pleted,  the  reference  sample  was  immediately  taken  for  test-
ing. On the reference sample, we selected 6–8 positions from
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the  center  to  the  edge,  and  measured  the  reflection  spectra
at  these  positions.  Comparing  these  reflection  spectra  with
the theoretically designed reflection spectra,  we were able to
determine  whether  the  actual  DBR  thickness  had  become
thicker  or  thinner  than the  designed value.  Having made the
corresponding  adjustments  (increasing  or  shortening  the
growth  time),  we  were  then  able  to  grow  a  structure  with
15/25 pairs of DBR in the subsequent run. In this way, a more
suitable  structure  can  be  obtained  after  only  a  few  runs.  The
resulting  QDs  possess  a  high  count  rate,  and  strong  vertical
light emission.

3.  Coupling step

Firstly,  we  inscribe  a  stripe  with  a  narrow  ditch  onto  the
substrate,  along  the  gradient  indium  flux  direction,  and  di-
vide it into four small pieces (see Fig. 2(b)), and measure each
piece  at  low  temperature  (T =  6  K),  to  locate  a  QD  in  a  low-
density  area.  If  C  (A,  B,  C,  D)  is  a  low-density  area,  the  yellow
area  as  shown  in Fig.  2(c) is  also  a  low-density  area,  and  the
blocks numbered 3 and 4 will be used for the micro-pillar pro-
cess.

16  single-mode  fibers  G657,  core/cladding  diameters:
9 μm/125 μm are embedded in V-grooves with an interval  of
127 μm, as shown in Figs. 3(a)–3(c), to form an optical fiber ar-
ray, designed to be coupled to micropillars. By means of sput-
tering SiO2 (as  a  hard mask),  photolithography,  and ICP etch-
ing,  we  were  able  to  form  micropillars  with  a  diameter  of
3 μm, as shown in Fig. 3(d), and an interval of 12 μm.

The substrate with micropillar array was then cut into smal-

ler rectangles. A drop of ultraviolet-curable epoxy (Norland Op-
tical  Adhesive  61)  was  placed  on  the  fiber  array  facet,  then
the front side of  the substrate was pasted onto the glue,  and
aligned with the coupling fiber row.

The device is shown in Fig. 4(a): Firstly, one drop of ultravi-
olet  curable  epoxy  was  dripped  onto  the  fiber  surface,  and  a
substrate  with  micropillars  was  attached  to  the  fiber’s  sur-
face. Secondly, we used a needle, pressing on the back of the
substrate,  to  reduce  the  inclination  angle  between  the  front
of  the  substrate  and  the  optical  fiber.  A  strong  ultraviolet
laser  (365  nm)  pointer  then  irradiated  the  coupling  for  5–
10 s. Once the ultraviolet curable epoxy was cured, the coup-
ling  fiber  from  the  pressing  device  was  removed.  Thirdly,  a
few drops of ultraviolet curable epoxy were dripped onto the
back  of  the  substrate.  The  substrate  was  then  placed  under
an  ultraviolet  lamp  for  4–5  h  to  consolidate  the  coupling
between the substrate and the optical fiber. Once the ultravi-
olet  curable  epoxy  was  completely  cured,  we  used  a  metal
holder, as shown in Fig. 4(b), to carry and fix the coupling op-
tical  fiber.  The  inside  of  the  metal  holder  was  coated  with
thermally  conductive  glue,  then  the  coupling  optical  fiber
was  inserted  into  the  thermally  conductive  glue,  and  finally
fixed with screws.

We  used  the  JANIS  CCS-100  device  for  our  preliminary
test.  This  device  can measure the PL spectrum of  16 fibers  at
a  time,  but  its  temperature  control  accuracy  is  low,  and  the
temperature  cannot  be  changed arbitrarily.  At  a  temperature
of about 35 K, we located QDs of superior intensity and qual-
ity,  as  shown  in Fig.  5(a).  They  exhibit  good  monochromati-
city,  with  no  influence  from  other  nearby  QDs.  In  contrast,
Fig.  5(b) shows a bad coupling position,  where photons from
many QDs are coupled to the same fiber.

Finally, the higher-quality coupling groups are tested sep-
arately  on  a  more  accurate  temperature  control  platform,
with the same experimental setup[19]. The setup can now accur-
ately  control  a  range  of  sample  temperatures  (4–40  K).  This
setup can only test one fiber at a time, but can accurately con-
trol the temperature, and change the sample temperature dur-
ing  the  test.  This  is  extremely  important  for  testing,  because
many  samples  are  at  a  certain  temperature,  and  the  light  in-
tensity can reach the highest value.

4.  Results and discussion

We find that a change in temperature has an obvious ef-
fect  on  the  matching  degree  of  the  cavity  mode,  as  well  as
single  QD  excitation  (X).  The  cavity-mode  (CM)  matching  re-
quires  precise  temperature  control.  The  fitting  results  for  the
PL spectra under different temperature conditions are shown
in Fig. 6.

Fig.  6(a) shows  the  fitting  for  cavity-mode  mismatching,
at a temperature of 27.4 K. Fig.  6(b) shows the fitting for cav-
ity-mode matching, at a temperature of 33.6 K.

Fig. 7 depicts a three-dimensional graph, based on measur-
ing  and  fitting  a  set  of  variable-temperature  PL-spectrum
data. The figure clearly shows that when the cavity mode over-
laps  the  single  QD  excitation  (X),  the  luminosity  efficiency
reaches its maximum.

As  shown  in Fig.  8,  when  the  cavity  is  matched  with
single  QD  excitation  (X),  by  changing  the  excitation  power,
measuring the intensity of a single photon and cavity mode re-
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Fig. 1. (Color online) The epi-structure of the sample.
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Fig. 2. (Color online) (a) Inscribing a stripe with a narrow ditch on the
substrate  along  the  gradient  indium  flux  direction.  (b)  Dividing  the
stripe into four small parts (A, B, C, D). (c) Illustrations of selected areas
for etching.
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veals  the  linear  relationship  (I ∝ Pn).  This  demonstrates  the
emission characteristics of the QD.

In order to prove that the single-photon source has good
anti-beam  properties,  the  second-order  correlation  function
is calculated by means of the Hanbury Brown–Twiss (HBT) ex-
periment.  We  measured  cavity-mode  resonance  and  cavity-
mode mismatch respectively, as shown in Fig. 9.

In  the  case  of  cavity-mode mismatching (T =  32.4  K),  the
single-channel  APD  received  count  rate  is  59  000.  After  de-
convolution  fitting, g2(0)  =  0.0817. Fig.  9(a) shows  the  spec-
trum  corresponding  to  a  temperature  of  32.4  K,  and Fig.  9(c)
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Fig. 3. Schematic diagrams of (a) fiber coupling, (b) fiber array, (c) cross-section of optical fiber array. (d) SEM image of micropillar array.
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Fig.  4.  (Color  online)  (a)  Auxiliary  coupling  device.  (b)  The  coupled
fiber array is fixed onto the metal holder.

 

890 900 910 920 930 940 950
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

P
L

 in
te

n
si

ty
 (

cp
s)

Wavelength (nm)

(a)

890 900 910 920 930 940 950

0

2000

4000

6000

8000

10000

12000

14000

P
L

 in
te

n
si

ty
 (

cp
s)

Wavelength (nm)

(b)

Fig.  5.  (a)  Single photon coupled by the SM fiber at  preliminary test-
ing. (b) Multiple photons, coupled by one fiber.
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p200 attenuation), using the Lorentz function fit for the PL spectrum.
(b)  Cavity  modes  matched  at  33.6  K  (with  p200  attenuation),  fitting
the PL spectrum.

Journal of Semiconductors    doi: 10.1088/1674-4926/42/7/072901 3

 

 
Y Chen et al.: Fiber coupled high count-rate single-photon generated from InAs quantum dots

 



corresponds to the HBT measurement result. In the case of cav-
ity-mode  matching  (T =  33.6  K),  the  single-channel  APD
count  rate  reaches  78  000, g2(0)  =  0.0795.  The  results  show
that  our  single-photon  source  has  a  high  single-photon  pur-
ity. Fig. 9(b) corresponds to the spectrum of the emitted light
at a temperature of 33.6 K, and Fig. 9(d) shows the correspond-
ing HBT result.

Lastly,  we  calculated  various  optical  path  losses  (includ-
ing  an  optical  fiber  HBT  optical  path  efficiency  of  10%,  and
an  APD  detection  efficiency  of  33%)  when  measuring  the
HBT, finally estimating that the single photon count-rate trans-
mitted  in  the  coupled  fiber  could  be  as  much  as  4.73  ×  106

(78 000 × 2 / 0.10 / 0.33 = 4.73 × 106 cps).

5.  Conclusions

We  have  achieved  the  transmission  of  a  high  count-rate
single-photon  source  in  SM  optical  fiber  by  optimizing  QD
growth  conditions  and  measurements  via  precise  temperat-
ure  control.  The  single  photon  count  rate  at  the  fiber  end
reaches  4.7  ×  106 cps,  and  the  second-order  autocorrelation
coefficient, g2(0),  is  0.08  for  the  resonance  of  the  QD  exciton
and  cavity  mode.  This  coupling  method  is  scalable,  and  has
the potential for significant further improvement.
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